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Abstract

This thesis mainly explores the asset-light solution for the Inter-Terminal
Transportation system at the Port of Rotterdam. Further building on the
innovative optimization model of Tierney et al. (2013), this thesis investigates
the possibility of utilizing residual capacity of visiting vehicles from external
parties. Variation in demand size and demand patterns mean that the ITT system
require different number of vehicles on different days. This thesis thus tries to
study how much effect extra capacity will have on the ITT system, i.e., reducing
the number of vehicles needed. In addition, this thesis also looks at different
ways to utilize extra capacity and compare their performance. The results of this
study shows a significant effect present and encourages further study and

adoption of the asset-light solution.



This research is carried out within the framework of the TUDelft, Erasmus
University, and Port of Rotterdam Authority joint project "Inter-terminal
transport on Maasvlakte 1 and 2 in 2030 - Towards a multidisciplinary and

innovative approach on future inter-terminal transport options".
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1. Introduction

The rapid growth in international trade has prompted ports around the world to
continue expanding the capacity to deal with the increasing amount of
containers. Multiple terminals often serve to transfer containers between
different modes of transportation including barges, railways and other forms of
hinterland transportation. The movement of containers between terminals is
called inter-terminal transportation (ITT). The ITT system functions as a
backbone for the whole port and it has to be carefully planned to satisfy the
demand of the port. Important decisions that have to be made in the strategic
planning of the ITT system include the layout of terminals, transportation

connections between terminals, the number and type of vehicles.

The plan to construct Maasvlakte 2 involves designing a new ITT system and
offers the opportunity to save costs using innovative solutions. An efficient ITT
system yields a minimal amount of delay in moving containers between
terminals and requires substantial investment in infrastructure, equipment,
technology and labor. How to make the right choice about infrastructure and
vehicle configuration therefore has significant implications on both cost and

performance of the ITT system.

Research in the area of ITT system is mainly focused on analyzing the
performance using simulation techniques, while Tierney et al. (2013) developed

a novel mathematical model to optimize the flow of containers. Dekker et al.



(2012) proposed an asset-light solution which seeks to utilize the residual
capacity of visiting vehicles and reduce the initial investment in purchasing
vehicles. Examples of unused transport capacity include: a barge which first
visits ECT - DDE, next Euromax and finally RWG can be used to transport extra
containers from ECT to RWG; a truck that needs to drop a container off at ECT
and has to collect another one at Euromax can move one extra container from
ECT to Euromax; Truckers who have some time left over in their duties are
available to do some ITT trips. If all these unused capacity can be identified,
purchased and utilized alongside vehicles owned by the port, the number of
vehicles needed is expected to drop and the associated operation and
maintenance costs would also become less. On the other hand, by 2030, multiple
terminals at the sea-side will compete in a market situation, most probably with
a surplus of capacity. This competitive environment will be part of the basic

context of the asset-light solution.

In this thesis, | therefore would like to focus explicitly on this “asset-light”
solution, which takes advantage of unused transport capacity, and discuss the
feasibility of adopting this unique solution as well as the implications for
planning and operating the ITT. Building upon the mathematical model
developed by Tierney et al. (2013) and using input from results of other ITT sub-
projects, | will systematically study the effect of extra transport capacity on the
number of minimum required number of vehicles and try to find the best way to
utilize this capacity if the effect is found to be significant. The research will offer

useful guidance for both Port of Rotterdam and other ports with similar



expansion plans. The research questions of this thesis can be formulated as
follows:
1. How to optimize the effect extra vehicles have on the ITT system by
adding extra vehicles in the right way?
2. Is the optimal effect found significant enough to justify further

investigation on the asset-light solution?

This paper is organized as follows. First past research findings on ITT are
summarized. Then the problem and demand data are described, followed by an
explanation of the mathematical model used in this thesis. Finally, the results of

this study are presented and analyzed.



2. Literature Review

Most studies that simulate and optimize container movements have focused on
intra-terminal transportation (e.g. Briskorn and Hartmann (2006); Grunow et al.
(2007); Nguyen and Kim (2009) ). However, most of these models are not ideal
for the case of inter-terminal transportation because vehicles typically have to
travel much longer distances over publicly accessible roads with a lot of external
traffic interactions in an ITT system, which is in strong contrast to intra-terminal

transportation.

Ottjes et al. (1996) presented a generic object oriented simulation model for
inter-terminal transportation with the nonperformance percentage (late arrival
percentage) being the main performance indicator. Another simulation study in
ITT done by Duinkerken et al. (2006) compared three different transportation
systems and analyzed the different characteristics of the transport systems.
These models mainly used simulation approaches to model the ITT at the port of
Rotterdam but a simulation model is not able to optimize container movements

in the ITT system.

Choobineh et al. (2011) used multi-class closed queuing networks to model
operations of automated guided vehicles in a manufacturing or distribution
environment. They modeled the steady-state behaviour of the closed queueing
network by a linear program whose optimal value is the estimate of the required

fleet-size. They also compared the analytical model with simulation studies for a



set of numerical examples and concluded that the analytical model provides a

good estimate for the required number of vehicles.

Tierney et al. (2013) developed a novel integer programming model for
analyzing ITT and applied the model to optimize the container movements for
the port of Hamburg and the port of Rotterdam. In their study, MTS is shown to
perform better than both AGVs and ALVs. Their research was the first to
incorporate optimization of vehicle routes and container flows in order to
provide ports and terminals with the best performance a particular
configuration of vehicles and infrastructure is capable of delivering. One main
difference between the Tierney et al. (2013) study and this thesis is that in this
study, different demand instances are solved by different solution methods. In
this study, demand instances are closer to reality and the methodology allows

adding extra vehicles.

Nieuwkoop et al. (2013) extended the original model by Tierney et al. (2013)
and presented a new model which can quickly calculate the optimal vehicle
configuration. They applied the model on three different demand scenarios at
the Maasvlakte area and concluded that less number of ALVs are required than
AGVs to achieve the same performance. Their study also recommended vehicles
with higher speed in order to reduce the number of vehicles required and the

associated investment costs.

As a basis for this research, Van den Berg (2013) studied the asset-light solution

using a simulation approach and concluded that extra capacity in the asset-light



solution has a negligible influence on the ITT system and therefore the asset-
light solution is not recommended for the ITT system at Maasvlakte. In his study,
even after adding a large number of extra vehicles (400 extra vehicles), the

number of basic vehicles required only drop slightly (from 89 to 88).



3. Problem Description

3.1 Maasvlakte terminals

This research studied the asset-light solution for the Maasvlakte expansion
project. The Maasvlakte area consists of different terminals including deep sea
terminals, rail terminals and hinterland terminals. The layout of the Maasvlakte

area is shown in figure 1.

ECT Delta Terminal

ECT Euromax

APMT Maasvlakte 1

Rotterdam World Gateway (RWG)
APMT Maasvlakte 2

Terminal 3

Terminal 4

ECT Delta Barge Feeder Terminal
Delta Container Services

WK N LA WN -

10 |Common Rail Terminal

11 |Rail Terminal West

12 |Barge Service Centre Hartelhaven
13 [Common Barge Service Centre

14 |Kramer Delta depot

15 |Van Doorn Container Depot

16 [Empty depot Maasvlakte 1

17 |Empty depot Maasvlakte 2

18 |Customs

Figure 1: Layout of the Maasvlakte area

3.2 ITT Vehicles

There are a range of different vehicle types available for ITT, each vehicle type with
its own characteristics. Those vehicles mainly include regular road trucks, Automated
Guided Vehicle (AGV), Automated Lifting Vehicle (ALV), Multi Trailer System
(MTS), and Barge. Tierney et al. (2013) studied these different vehicle types and
concluded that MTS has the best performance in terms of punctuality. Since this study
does not intend to compare vehicle types, only ALV is chosen to be used in the

model, which means any vehicle capacity including extra unused capacity are

imn



provided by ALVs. ALV instead of MTS is chosen because the objective of this study
is not to recommend the best vehicle configuration and a vehicle type with average
performance would be more representative of the general case and avoid over
optimism. ALVs are automated vehicles that can carry one forty-foot container or two
twenty-foot containers. They are also equipped with lifting capabilities and thus do

not require cranes for loading and unloading operations.

3.3 ITT Demands

ITT demands are modeled using a multi-commodity flow in the same way as in
Tierney et al. (2013). Each demand models the flow of containers between terminals
at various times and includes origin node, destination node, amount of containers,
release time, due time and a penalty function which is a piecewise linear function of
the lateness of the arrival of the containers. However, the original demand instances in
Tierney et al. (2013) are not used in this research because most data used in the
demand instances are assumed rather than taken from real data. Instead, I took the
results of Jansen (2013) and extracted 11 different demand instances for my research.
Jansen (2013) not only predicted the annual throughput under four different scenarios
based on different economic factors, but also studied the hourly and daily variation in

demand by investigating the arrival pattern of containers.

However, it remains unclear whether the assumptions made in the Jansen
(2013) study are realistic and there is an ongoing research project on improving
the demand generator. Therefore, this research can be repeated using results

from future research on ITT demand.
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3.4 Asset-light solution

In this asset-light solution, vehicles are added to the demand instances for a
limited time period. In this research, a two-hour time window is assumed for the
extra capacity. During the two-hour time window, the extra vehicles can do ITT
trips between any two terminals in the same way as normal vehicles, meaning
that they can do as many ITT trips as possible within the two-hour time limit.
Any extra vehicle starts at a certain terminal, but does not need to return to the
original terminal or any other specific terminal. In other words, extra vehicles
can end up at any terminal. It is worth mentioning that in practice, some extra
vehicles can only start at certain terminal and finish at another fixed terminal.
Therefore, the setting used in this research is an optimistic one. However, it is
possible to account for fixed ending terminal by reducing the available time
period for extra vehicles. In this way, extra vehicles are allowed enough time to

travel to the terminal by certain time.
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4.Methodology

In this paper, we used a revised version of the integer programming model and
the C++ program developed by Tierney et al. (2013) to run demand instances
generated from Jansen (2013)’s study in order to test the asset-light solution. In
the revised model, one constraint is modified and one more constraint is added
in order to allow extra vehicles. The objective of the IP model is to minimize
penalty caused by late delivery of containers and the IP model is solved to
optimality by CPLEX with the time limit set at 1800 seconds. The program
returns “timeout” when time limit is exceeded. In my research, “timeout” has not

occurred for a single time.

4.1 Model Assumptions

The model, which was created by Tierney et al. (2013), is based on a time-space
graph. Loading and unloading of containers, transporting containers between
terminals and traffic congestion are all incorporated in this model. It should be
noted that several assumptions are made in this model. First of all, early arrival
is not penalized and only lateness will result in penalties; In addition, short
vehicle activities, such as connecting a tractor to a trailer loaded with containers
in an MTS, are not modeled due to its requirement of fine discretization; Finally,

it is assumed that all containers are 40 foot containers.

4.2 Time-space Graph

The time-space graph is constructed from a base graph, a non-temporal graph

that describes the terminals and the connections between the terminals at the

1



Maasvlakte area. The “terminal” here means “either end of a carrier line having
facilities for the handling of freight and passengers” instead of other meanings of
the word “terminal” might have. All the terminals and intersection points, which
means physical intersections between roads at the Maasvlakte area, constitute
the set of all nodes of the base graph and the traffic connections between the
terminals are represented by the set of arcs. Each terminal has a unique terminal
node in the base graph. Let n be the number of terminal nodes and m be the
number of intersection nodes, the base graph can then be defined as G=(V,A)
where V={1,...,n+m} is the set of all nodes and A is the set of arcs (i, j) where

i,j € V. The base graph is then expanded into a time-space graph over time
where 7 is the total number of time periods. The time-space graph is defined as
GT = (VT,AT) where VT is the set of nodes and A7 is set of arcs. For every node
in V, T copies of the node are made in V. The arcs in the time-space graph
incorporate the minimum time for a vehicle to move from one terminal node to
another terminal node. There are in total 7 time steps in the time-space graph

and each time step represents a moment in time.

The time-space graph consists of three types of nodes: terminal nodes,
intersection nodes and long-term nodes (LT nodes), which are copies of terminal
nodes used to model long term loading/unloading of containers. LT nodes are
required for some vehicles, which take more than a single time discretization to
load or unload. In the case of this where only ALVs are used, LT nodes do not
function in the model. When LT nodes are not needed, a single node in each time
period is created for both terminals and intersection nodes. For each node in the

time-space graph two properties are associated: the number of vehicles at the
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node, which includes both the vehicles made available at the start of
optimization and the extra flexible vehicles made available at any time, and the
maximum loading/unloading moves per time period. Contrary to Tierney
(2013)’s research, in which only those nodes at time zero have vehicles available,
this study has allowed nodes at time periods other than zero also to have

vehicles to model adding extra vehicles at any time point.

There are also three types of arcs that connect the nodes. First of all, stationary
arcs connect nodes for the same terminal at different time periods and allow
vehicles and containers to stay in the same terminal over time. Secondly, long-
term arcs connect terminal nodes with its long-term nodes. Finally, the normal
arcs connect nodes representing different terminals over different time periods
in order to model the movement of vehicles and containers from one terminal to
another terminal. For each arc we associate a capacity indicated by the maximum

number of vehicles that can travel on it in a single time period.

4.3 IP Model

The revised IP model, which allows adding vehicles at any time, is presented as

follows.

Parameters used in the IP model are as follows:

n Number of nodes in the base graph
T Number of time periods

%4 Set of nodes in the base graph

vT Set of nodes in the time-space graph
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In(i)

Out(i)

-~
=l

=
1

Yi

HUij

1A

Set of arcs in the time-space graph

Number of demands

Set of nodes with an arc tonode i € VT

Set of nodes with an arc from node i € VT

Set of nodes excluding any time-space node that matches the origin or

destination of @

Outgoing, non-stationary, non-LT arcs fromnode i € VT

Origin node in V of demand 6

Destination node in V of demands 6

Amount of containers in demand 6

Release time step of demand 6

Due time step of demand 6

The unit penalty of containers arriving at node i for demand 6

Late delivery penalty function

Equal to 0 iffarc (i,j) € AT is a stationary arc from the demand origin
of 8 orisan LT arc

Maximum number of vehicles on arc (i, j) € AT

Maximum number of container load/unload moves during a time
period at node i

Maximum number of LT vehicle load/unload moves during a time
period at node i

Amount of vehicles present at node i € VT at the start of optimization
Maximum vehicle throughput of node i € VT

Maximum container capacity of a vehicle on arc (i, j) € AT



H Set of extra vehicle time periods, indexed by h

Sin Number of extra vehicles to become available at time space node
ieVl,heH
tEnd the end time of extra vehicle period h € H

4 Set of time-space nodes with the end time of extra vehicle period
he H;VF ={i e VT|t; < tf™ < t;,,}, where t; is the time that time —
space node i € VT occurs and t;,; is next time step for the same

terminal

There are two sets of decision variables: Xij € {0, . cl-j}: is the amount of

vehicles on arc (i, j) € AT\ALT. It does not include LT arcs because LT nodes are

only duplicates of normal terminal nodes. y;;o € {0, ..., ag} is the amount of

containers flowing on arc (i, j) € AT for demand 6

The objective function and constraints are as follows:

min Z Z Z CareVia'e 4 =t1dg +t (1)

1<0<0 ug<t<ti€ln(d")

Z Sijeyije < pijxi;  V(iL.j) €AT (2
1<6<0

Z Xij — Z xkiSsi+Zsih vie VT (3a)*

jeout(i) kein(i) heH
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Xij — Z Xki

ievl \jeout(i) keIn(i)
SZ Zsih’_zsjh_z Z Sy Yh€H (3b) *
iev,l h'eH jevT levT h”EH,tfﬁdztﬁnd
Xij + Z Xji S Vi vieVv? 4)
jeout(i) JjeIn(i)

Vo'jo =g V1 <0 <0,0' =709 +19 (5)
jeout(o”)

Z Yijo — Z Ve =0 VI<60<0,ieVP (6)

jeout(i) kein(i)

Z Yie=as V1<6<0 (7)

tdg<j<t(dg+1) i€In(j)

Zyije-l_zyjiB <m; VO<i<nt (8)

— —
1<60<0 jEViT jEViT

(ijo +¥jie) <mi” VO<i<ntj=nt+i (9)
1<0<0

The objective function (1) minimizes the penalty caused by lateness of container
arrivals. d' is the time-space node at time t for node dy in the base graph and
cq4'p 1s the unit penalty coefficient which is determined by time and the demand.
Constraint 2 limits the number of containers on an arc to be less than the total
capacity of all vehicles travelling on this arc. However, stationary arcs are not

bounded by this constraint.

In constraint 3a, the total number of vehicles leaving a certain time-space node i,

Y jeout(i) Xij» should be bounded by the sum of the number of vehicles which

1Q



start at that node, including both basic vehicles, s; , and extra vehicles, },eq Sin,
and the number of vehicles entering that node, Yxcn(i) Xk:- In other words, the
net outflow at certain time-space i should be bounded by the total number of
vehicles that become available at that time-space node. The vehicles that become
available at certain time-space node include two parts, s; and ).,y S;;, , but
note that s; has a positive value only when i is a time-space node at time zero,
this is because all basic vehicles become available at time zero. On the other
hand, there is no such limit to )} ¢y S;;, because extra vehicles can be added at

any time at any terminal.

When a certain extra vehicle period h (e.g., h can be “from 12:00 to 2:00”) comes
to an end, those extra vehicles whose availability ends at this time can no longer
come out of any time-space node i at the end time (all such time-space nodes
constitute the set V;7) to do more ITT trips. This termination of availability is

captured in constraint 3b.

On the left side of the constraint is the net flow for all nodes in V;'. On the right

side of the constraint, ZithT Ynen Sip Tepresents the total number of extra

vehicles that are added at all nodes in V!, Y jevT Sjn is the total amount of extra

vehicles with extra time period h, and %,y X, 1 ¢End Sp!” indicates the

eH L=
total number of extra vehicles whose availability happens to end at t£™?. The

first item ZiEVhT Yn'en Sy and the third item Y, e 7 X, 1 (End Sy are added

eH,tf{}dz

to account for the possibility that there might be other extra vehicles starting or

10



ending at the same time as the end time of h. However, in this research, this

scenario does not happen and therefore both items will always be equal to zero.

Constraint 4 constraints the number of vehicles entering and leaving a node in a
particular time step. The flow of containers through the network is modelled in
constraints 5, 6, and 7: the origin nodes of a demand must have a total outflow
equaling the total number of containers in that demand, the destination nodes of
a demand must have a total inflow equaling the total number of containers in
that demand, and any other nodes have equal inflow and outflow for that
demand. Constraint 8 bounds the loading/unloading capacity at a node in a
single time period and constraint 9 bounds the loading/unloading rate at long-

term nodes.
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5.Heuristics

The mathematical model presented in chapter 4 is first used to solve the demand
instances without extra vehicles as the basis for further results. In this process, |
try to search for the minimum number of vehicles to achieve zero penalties for
each instance. In order to do so, I used a binary search approach to find the
optimal number of vehicles. The binary search works as follows: starting from
100 vehicles, if the penalty is zero, then 100 is the upper bound of the optimal
number and 0 being lower bound. Then we try the half value which is 50 (on the
other hand, if the penalty is larger than zero, we double the value and try 200
vehicles), if the penalty is larger than zero, then 50 becomes the new lower
bound and we will try the half value of 100 and 50, which is 75. This process is
repeated several times until we find the minimum number of vehicles for the
instance to have zero penalties. The basic results will give information about the

lower bounds for the experiments with extra vehicles.

Then in the asset-light solution, five different heuristics are investigated using
the same mathematical model to find the best way to add extra vehicles. The five

heuristics are explained as follows:

5.1 Heuristic 1
In heuristic 1, we add extra vehicles to transport penalty generating demands, i.e.
demands with containers arriving late. We first run the instances with a certain

small number of vehicles that are all available for the whole time period. Then

21



the penalty result is collected and analyzed. All the containers arriving late will
together contribute to the total penalty. Heuristic 1 will then add extra vehicles
at the starting nodes or origins of the late containers and the number of extra
vehicles is equal to the number of containers that arrive late. It can be expected
that adding vehicles in this way will almost certainly result in zero penalty and
we need to search for the smallest number that generates zero penalty.
Therefore, we need to reduce the number of extra vehicles and try different
values until we find the minimum number to achieve zero penalties. Again
binary search is used in this process. In the process, half value is taken for the

extra vehicles for each node.

5.2 Heuristic 2 and 3
In heuristic 2 and heuristic 3, extra vehicles are added at peak hours (i.e., peak
hours of container demands) and pre-peak hours (the hours immediately

preceding peak hours) respectively.

The second heuristic tested in this study is adding extra vehicles at peak hours. A
peak in demand is very likely to cause a peak in container traffic as well.
Therefore, we expect to find an effect by adding vehicles at those peak hours. The
following two graphs show the demand in the number of containers over time
for instance 1, with the first graph sorted in minutes and second in hours. The
number of containers in a single demand are proportionately divided over the
time period between its release time and due time, e.g. 120 containers released

attime 0 and due at time 80 will add 1.5 containers (120/80=1.5) per minute

27



from time O to time 80 in the first graph and add 90 containers (120*60/80=90)

in hour 1 and 30 containers in hour 2 in the second graph.

2.5 T T 120 T T T T T T T T T T
100 + .
2l .
80 .
1.5F .
60 .

1k LH—]—H‘-'I J
40 - .

0.5f -
‘—\ 20| ]

0 200 400 600 12345678910

Figure 2: Number of containers over time

In the above figures, hour 7 and hour 8 would be counted as peak hours and all
extra vehicles will be available from time 360 to time 480 and evenly distributed
over the terminals. In searching for the minimum number of vehicles required,
the lower bound is chosen as the starting value and the same binary search

approach is used.

For comparison reasons, heuristic 3, adding vehicles at pre-peak hours, is also

tried with the 11 instances. Pre-peak hours are the two hours immediately

7



preceding the peak hours. In the case of instance 1, hour 5 and hour 6 is chosen

as the non-peak hour and all extra vehicles are added from time 240 to time 360.

The following table lists the peak hours and pre-peak hours for all 11 instances.

Instance 1 2 3 4 5 6 7 8 9 10 11
Peak hours 360- 240- 360- 360- 240- 300- 360- 300- 360- 300- 360-
480 360 480 480 360 420 480 420 480 420 480
Pre-peak 240- 120- 240- 240- 120- 180- 240- 180- 240- 180- 240-
hours 360 240 360 360 240 300 360 300 360 300 360

Table 1: Peak hours and pre-peak hours for all 11 instances in this study

5.3 Heuristic 4
In heuristic 4, extra vehicles are added to deal with those demands with smallest
slack, i.e. the most urgent demands with the tightest deadlines and the least
flexibility. Slack is defined as follows:

slack = due time - release time — MinTimeBetweenOriginDestination
Apparently, those demands with small slack must be transported as soon as
possible after they are released; otherwise penalty is very likely to occur.
Therefore, by adding extra vehicles to deal with those demands, one might
expect other vehicles can be freed up and have more flexibility in transporting

containers.

In the binary search process, the lower bound calculated earlier will be the

starting value of the number of extra vehicles. The extra vehicles will be added to

the origins of those demands in order of increasing slack.

5.5 Heuristic 5
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In heuristic 5, we add all extra vehicles at the same time period and search for
the best time period to add extra vehicles. Heuristic 5 is developed based on the
results of heuristic 2 and heuristic 3. Since the combination of those two
heuristics would have excellent performance with number of extra vehicles
needed close to lower bound in most of the 11 instances, searching for the best
fixed time period to add extra vehicles before running binary search would
guarantee a performance at least as good as the combination of heuristic 2 and
heuristic 3. The process works as follows: extra vehicles are added to the 11
instances at 8 different fixed time periods: 0-120, 60-180, 120-240, 180-300,
240-360, 300-420, 360-480, 420-540 and 480-600 with the number of extra
vehicles equal to lower bound; the time period with the lowest penalty will be
chosen to proceed with the binary search process to find the minimum number

of extra vehicles required to get zero penalty.

5.6 Summary

In heuristic 2, heuristic 3 and heuristic 5, extra vehicles are evenly distributed
over the different terminals. In contrast, in heuristic 1 and heuristic 4, extra
vehicles are added at the origin terminals of penalty generating demands and

urgent demands respectively.

In heuristic 1 and heuristic 4, extra vehicles may not necessarily become
available at the same time, e.g. some vehicle might become available at time 120
and others become available at time 180. On the other hand, for heuristic 2,
heuristic 3 and heuristic 5, all extra vehicles are available for the same time

period, e.g., from time 120 to time 240.
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In each heuristic, we search for the minimum number of vehicles required to
achieve zero penalty for all 11 instances. Binary search is used in this process
and, except for the case of heuristic 1, the starting number of extra vehicles is the
lower bound of the extra vehicles needed. The lower bound is obtained by
calculating the number of extra vehicles required in the scenario which assumes
that all extra vehicles are available for the whole time period of 11 hours. In
heuristic 1, the starting number of extra vehicles is equal to the total number of

containers arriving late.
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6.Data Description

As mentioned earlier, the data used in this study includes the demand instances
and the basic parameters of the ITT system. The demand instances all have a 10-
hour time period with an 8 minute discretization. For the demand instances
taken from Jansen (2013), each demand has an origin terminal, a destination
terminal, a release time, a due time and a penalty function. By taking into
consideration of the minimum time required for a vehicle to travel from the
origin terminal and destination terminal, the release time and due time of each
demand have been manipulated to prevent infeasible instances, i.e. instances

that have demands that are impossible to deliver on time.

6.1 ITT parameters

In this joint ITT project, common parameters are used in different sub projects. The
Maasvlakte area consists of 18 different terminals and 10 intersections. The OD
matrix is shown in appendix. The parameters for the vehicle (ALV) used in this study

are listed in the following table:

Name ALV
Capacity (TEU) 2
Manned No
Avg. speed (km/hr) 40
Length (m) 13,7
Purchase costs (euro) 500000
Fixed costs (euro) N/A*
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Wage costs (euro/hr) N/A

Fuel costs (euro/km) N/A
Penalty costs (euro/hr) N/A
Mooring time (min) 0

Table 2: ALV parameters used in the joint ITT project

*N/A means not available

Since the real penalty costs are not available, the penalty parameters c;y are assumed
in this study. They are calculated in the C++ program by the penalty function py.
D is a piecewise linear function that penalizes late arrival of containers and py is
equal to zero when the container arrives early or on time. The mathematical
definition of pyg is as follows: pg: {0, ...,7 — 1} - R where lateness in minutes is
mapped to penalty and pg(t) = 0 for all t < uy. In this research, each demand
has its own penalty function, but all penalty functions share the same format:
pe(t) =0 forallt < uy
po(t) = ¢ forallug <t <ty

po(t) =c, foralltl <t < t2;

with ¢y, c,,...being constants.
Most penalty functions used in this research has three or four pieces and the
constants in the function can take different values based on needs. In this study,
the constants are taken the values such that c¢,,,; = 2c¢,. Due to the discretization
of time in the model, more complicated penalty function can be used in future

research without increasing the complexity of the model.
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6.2 Demand data

The following two figures by Jansen (2013) show the demand patterns on both

weekdays and weekend.
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Figure 3: Arrival pattern of containers on various terminals
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Figure 4: Average daily arrival pattern of containers on both weekdays and
weekends

The 11 demand instances used in this study are derived from the demand data

by Jansen (2013) by breaking the large instances into smaller instances over an

11-hour time period and 8-minute discretization and adjusting the format so

that they can be read by the program used in this study. The 11 demand
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instances represent 11 different average weekdays. The due time of any demand

is within the first 10 hours in order to prevent infeasible instances.

We also calculated the minimum time to transport each container in each
demand for all 11 instances using the speed and distance data. By adding them
up for all the containers in one instance and then dividing it by the total amount
of time available, which is 680 minutes in this study, we arrive at the theoretical
minimum number of vehicles required for each instance. In this ideal situation,
each vehicle will be fully loaded for the whole 680 minutes and will be always
transporting containers, meaning 100% utilization rate for all vehicles. While
this is impossible in practice, this data gives an overview of the workload for all
11 instances. The following table summarizes the theoretical minimum for all 11

instances.

Instance Theoretical Minimum
19,13
21,24
22,09
16,21
17.87
13,81
16.82
17,78
19,75
18,79
11 17,99
Table 3: The theoretical minimum number of vehicles required for all eleven

O o0 NGOV, WNPR

=
o

instances

6.3 Extra vehicles data
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In all five heuristics, extra vehicles are all available for two hours and two hours
only. After being available for two hours, these extra vehicles can no longer do
further ITT trips. Any ITT trip carried out by extra vehicles also needs to be
finished before the end time of their availability. All extra vehicles do not need to

return to any specific terminal by the end of the extra time period.

21



7. Results

7.1 Basic Results

We first present the basic results, in which no extra vehicles are added to the
instances. The following table gives an overview of the binary search process and
the final result for the first 4 instances. The “time” in the table means

computation time, which is the time it takes for the program to return a solution.

Instances 1 2 3 4

100 Penalty 0 0 0 0

Search order 1 1 1 1

Time 99.59 69.12 81.64 74.04

70 Penalty 0 0 0

Search order 5 5 5

Time 93.74

67 Penalty 0 270 0

Search order 6 6 6

Time 89.56 93.16
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65 Penalty 270 0

Search order 4 8

Time 59.92 181.49 95.02

62 Penalty 0

Search order 7

Time 96.42

60 Penalty 500

Search order 6

Time 207.64

50 Penalty 172000 250430 519150 11250

Search order 2 2 2 2

Table 4: Binary search process for the first four demand instances

Take the first instance as an example: we first start with 100 vehicles and get
zero penalty; then we try the half value 50 but we get a positive penalty value;

we add the vehicle number to 75 and the penalty value drops to zero; we then



decrease the vehicle number to 65 and the penalty value increases to 270; so we
increase the vehicle number to 70 and we again get zero penalty; the last two
numbers tried for this instance are 67 and 66 respectively, both with zero
penalty. Therefore, the minimum number of vehicles required is 66 because the

penalty is zero at 66 and larger than zero at 65.

In this way, we find the minimum number of vehicles required for all 11 demand
instances, which are listed in the following table and figure. The “theoretical

minimum” is taken from the “data description” section for comparison.

Instances 1 2 3 4 5 6 7 8 9 10 11
Theoretical 191 212 221 16.2 179 138 168 178 19.8 18.8 18.0
Minimum

Min Nr. Vehicles 66 61 68 65 47 52 45 88 61 52 64

Table 5: Minimum number of vehicles required for 11 instances

100
90
80
70
60
50
40
30
20
10

0

B Min Nr. Vehicles

Number of Vehicles

1 2 3 4 5 6 7 8 9 10 11
Instances

Figure 5: Minimum number of vehicles required for 11 instances
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The above result shows that different instances require largely different number
of vehicles. Suppose the 11 instances represent demands on 11 different days,
then we need at least 88 vehicles to make sure that there is no delay in container
transportation on any day. However, on most days, we do not need 88 vehicles

and the vehicle utilization rate is low.

7.2 Results for asset-light solution
In the asset-light solution, there will be extra unused capacity available for ITT
trips for a limited amount of time. We are interested in how much influence extra

capacity will have on reducing penalty.

Given the results from 5.1, if we have only 50 vehicles available, then only 2 out
of 11 instances will have zero penalties. Now suppose we have unlimited extra
capacity available for unlimited amount of time, then the number of extra
vehicles required is simply the difference between the resultin 5.1 and 50. The
number of extra vehicles required in this ideal scenario is listed in the following
table and figure. In the table, the first row is taken directly from the result of 7.1.
The second row indicates the number of basic vehicles that are available for the
whole time period and the third row gives the number of extra vehicles required

in the case when extra vehicles are also available for the whole time period.

Instances 1 2 3 4 5 6 7 8 9 10 11

Min Nr. Vehicles Needed 66 61 68 65 47 52 45 88 61 52 64

Number of basic vehicles 50 50 50 50 50 50 50 50 50 50 50

21~



Nr. extra vehicles needed 16 11 18 15 0 2 0 38 11 12 14

Table 6: Number of extra vehicles needed when extra vehicles are available for
unlimited amount of time

100
90
80
70
60
50
40
30
20
10

0

B Nr. extra vehicles needed

Nr. Vehicles

B Nr. basic vehicles

1 23 456 7 8 91011
Instances

Figure 6: Number of extra vehicles needed when extra vehicles are available for
unlimited amount of time

In this study, we assume that extra vehicles are only available for two hours in
the whole time period of 11 hours. Logically, we expect to need more than the
number in table 6. Therefore, when we search for the number of extra vehicles
needed in the case when extra vehicles are only available for two hours, the

numbers in table 6 will be the lower bounds of the final solutions.

However, when and where to add those extra vehicles need to be predetermined
before we search for the number of extra vehicles needed. There are infinitely
many ways to add extra vehicles and trying to find the optimal way to add extra
vehicles is unrealistic. Therefore, in this study we try to find a heuristic which is
easy, fast and effective. Next, we present the results of five different heuristics of

adding extra vehicles.
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7.2.1 Results of heuristic 1

If there are only 50 vehicles, penalties will be generated for most instances. The
first heuristic is to add vehicles where penalties are generated. Take instance 1
as an example, when there are only 50 vehicles, the final penalty is 172000. The

breakdown of the total penalty is listed in the following table.

Demand Total Nr. Containers Total Start Release
Number Arriving Late Penalty Node Time
Instancel 0 3 810 7 27
3 2 540 5 3
7 22 65940 7 35
10 10 24780 3 13
12 31 30520 4 48
14 23 24450 5 41
17 19 21630 7 50
18 7 3330 1 47

Table 7: Breakdown of penalty for instance 1 with 50 vehicles

Based on the above table, vehicles will be added at the starting nodes of the
penalty generating demands and the number of vehicles equals the number of
containers that arrive late (e.g. 3 vehicles will be added at node 7 at time 27 for
two hours and 2 vehicles will be added at node 5 at time 3 also for two hours).
The following table lists the final results for all 11 instances. The first row lists
the basic result without extra vehicles from section 7.1 and the second row

presents the lower bound of extra vehicles needed when 50 basic vehicles are
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present. The last row gives the minimum number of extra vehicles needed for
heuristic 1 when 50 basic vehicles are available for the whole time period.
Furthermore, we also show the relationship between penalty and number of

extra vehicles for instance 1 in the graph below.

Instances 1 2 3 4 5 6 7 8 9 10 11

Nr. Extra Vehicles 16 11 18 15 O 2 0 38 11 2 14

Table 8: Minimum number of extra vehicles needed for heuristic 1

120

100

80

i Extra vehicles

Nr. Vehicles
[e))
(e)

40 - & Basic vehicles

1 2 3 4 5 6 7 8 9 10 11
Instances

Figure 7: Minimum number of extra vehicles needed for heuristic 1
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Penalty vs. Number of Extra
Vehicles
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Figure 8: The relationship between lateness penalty and number of extra
vehicles for instance 1

The above table shows that adding extra vehicles using heuristic 1 does have a
significant effect in reducing penalties. In instances 4, we even only need to add
15 vehicles for two hours, which is the lower bound of the extra vehicles needed.

The maximum number of extra vehicles needed is 55, which is in instance 8.

Overall, this heuristic has a reasonable performance in the 11 instances tested
with the model. Without further experimenting with other heuristics, it can
already be safely concluded that using extra vehicles with two-hour availability
is cheaper than having vehicles available for the whole 11 hours since the

number of extra vehicles needed is relatively low.

We also produced two graphs of vehicle utilization rate for instance 3 under both
basic solution and asset-light solution. Vehicle utilization rate at any given time
point is the percentage of vehicles that are transporting containers. Instance 3 is

chosen because the above result shows that instance 3 require the most number
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of extra vehicles on top of the lower bound, which in general means the worst

case scenario. Below we show two separate graphs for basic solution and asset-

light solution respectively and another graph for a comparison of the utilization

rate.
Vehicle Utilization Over Time (Basic
Solution)
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Figure 9: Vehicle utilization over time for instance 3 under the basic solution

with 68 vehicles
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Figure 10: Vehicle utilization over time for instance 3 under the asset-light

solution with 50 basic vehicles and 36 extra vehicles
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Figure 11: Comparison of vehicle utilization rate for instance 3 under basic

solution and asset-light solution

Overall, for instance 3, the average vehicle utilization rate under the basic
solution is 57.76% and the average vehicle utilization rate under the asset-light
solution (using heuristic 1) is 61.26%. Is should be noted that the asset-light
solution (using heuristic 1) so far has the worst performance for instance 3.
Nevertheless, the vehicle utilization rate increased from 57.76% to 61.26%.
Therefore, we can confidently conclude that the asset-light solution has a

significant effect in increasing the vehicle utilization rate.

7.2.2 Results of heuristic 2 and heuristic 3
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Below is a summary of the results for both heuristic 2 and heuristic 3. Again the

first two rows list the number of vehicles needed in the basic scenario and the
lower bound for the number of extra vehicles needed when there are 50 basic

vehicles available for the whole time period. The last two rows give the results

for heuristic 2 and heuristic 3, indicating the minimum number of extra vehicles

needed to achieve zero penalty when 50 basic vehicles are available for the

whole time period.

Instances 1 2 3 4 9 11

Basic (No extra Nr. Vehicles 66 61 68 65 61 64

vehicles) Needed

Lower Bound Nr. Extra 16 11 18 15 11 14
Vehicles Needed

Heuristic 2 Nr. Extra 29 42 34 15 21 31
Vehicles Needed

Heuristic 3 Nr. Extra 20 31 19 15 19 17

Vehicles Needed

Table 9: Minimum number of extra vehicles needed for heuristic 2 and heuristic

3

From the above table, heuristic 3 surprisingly performs better than heuristic 2 in

most of the instances except in instance 6. This contradicts the common

expectation that adding vehicles at the peak hours would be more efficient in
reducing penalties. It is possible that adding vehicles at peak hours will add to

the burden at busy terminals and the throughput of those terminal nodes

becomes the bottleneck. In other words, constraint 4 becomes binding and limits
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the effect of extra vehicles. This can be well illustrated by instance 8, in which
adding extra vehicles at peak hours is not able to reduce the penalty to zero. On
the other hand, adding vehicles at pre-peak hours is less likely to cause such a
congestion effect and it can also eliminate more jobs right before peak hours and
therefore reduce the workload during the peak hours. Nevertheless, combing the
results of both heuristic 2 and heuristic 3, it can be seen that adding all the extra
vehicles at the same fixed time period, which means all extra vehicles are made
available at the same time, can perform very well as long as they are added at the

right time.

7.2.3 Results of heuristic 4
The distribution of demand urgency as defined by slack is shown in the following
table, with the average slack meaning the average slack across all demands in a

particular instance.

Slack (hours) 0-1 1-2 2-3 34 4-5 >5 Average Slack (minutes)
Instance 1 20.8% 14.4% 13.0% 21.6% 9.6% 20.6% 182.306
Instance 2 25.2%  31.0% 1.4% 3.2%  23.2% 16.0% 159.628
Instance 3 33.0% 26.6% 3.8% 19.8% 8.4% 8.4% 132.356
Instance 4 28.2% 9.0% 8.4% 12.6% 10.0% 31.8% 201.566
Instance5 36.80% 22.40% 11.00% 9.80% 9.20% 10.8% 125.08
Instance 6 12.6% 8.4% 48.6%  10.0% 12.6% 9.6% 170.934
Instance7  19.20% 36.20% 8.20% 12.20% 1.00% 23.2% 155.996
Instance 8 31.8% 14.4%  23.2% 2.6% 8.6% 19.4% 161.476
Instance 9 13.6% 20.8% 12.0% 19.4% 30.4% 3.8% 168.332
Instance 10 11.4%  19.8% 11.0% 5.6%  26.2% 26.0% 221.46
Instance11  16.4% 25.6% 16.4% 38.8% 2.8% 0.0% 149.566

Table 10: The distribution of slack and average slack for 11 instances

For heuristic 4, I start with the lower bound and the results are shown as follows:
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Instances 1 2 3 4 5 6 7 8 9 10 11

Nr. Extra 16 11 18 15 2 38 11 2 14
vehicles

Penalty 740 29240 145140 O 870 1350 21960 1890 32400
Computation 228.07 333.58 174.44 97.94 112.47 187.29 254.17 498.05 225.55
Time

Table 11: Penalty results for heuristic 4 with number of extra vehicles equal to
lower bound

The “computation time” row lists the time for the program to return a solution in
a single run and does not include manual operation time. It can be seen that the
penalty is quite large for most of the instances. After comparing this result with
the first three heuristics, I have concluded that this heuristic has the worst

performance and therefore does not worth further searching.

7.2.4 Results of heuristic 5

In heuristic 5, we first look for the best time period to add extra vehicles and
then search for the minimum number of extra vehicles needed. Theoretically, it
might take up to about 15 different trials with the program until we can find the
optimum since we need 8 different trials to find the best time periods and
another 7 different trials in the binary search process if the difference between
upper bound and lower bound is less than 128, which would be very likely to
hold true based on the search process recorded in heuristic 2 and heuristic 3.
However, the above process is possible to stop early. For example, when zero

penalties is found for a certain time period with the lower bound, then further
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search will no longer need to be carried out. In addition, since it is expected that
the final result will be rather close to the lower bound, it is unlikely to take up to
seven different trials in the binary search process to find the optimum. The final

results are shown in the following table:

Instances 1 2 3 4 5 6 7 8 9 10 11
Lower Bound 16 11 18 15 0 2 0 38 11 2 14

Nr. Extra 20 31 19 15 0 2 0 44 17 3 17
Vehicles

Needed

Best Time 240-360 120-240 240-360 240-360 N/A 240-360 N/A 180-300 300-420 180-300 240-360
Period

Pre-peak 240-360 120-240 240-360 240-360 N/A 180-300 N/A 180-300 240-360 180-300 240-360
Hours

Total 1942.24 2471.30 1674.34 1234.19 N/A 2324.15 N/A 1553.10 1528.79 1035.21 1489.27

Computation
Time

Table 12: Minimum number of extra vehicles needed for heuristic 5

As can be seen from the table, the best time period to add extra vehicles turns
out to be the same as the pre-peak hours in 9 out of 11 instances except instance
6 and instance 9. Even in instance 6 and instance 9, the performance of heuristic
5 is only slightly better than heuristic 3. In heuristic 3, the number of extra
vehicles needed for instance 6 and instance 9 are 4 and 19 respectively. In
addition, the total computation time, which is the total amount of time for
running the model excluding any manual operation time, is quite large for all 11
instances.

7.2.5 Summary of five heuristics

The following table lists the results of the above-mentioned heuristics without
the result of heuristic 4 since it has been dropped as a bad solution. It can bee

clearly seen from the table that heuristic 5 has the best performance. However, it
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can also be observed that heuristic 5 only performs slightly better than heuristic

3 but heuristic 5 takes much more time than heuristic 3 since heuristic 5 on

average takes 15 runs (8 trials to find the best time period and 7 additional trials

to find the minimum number of extra vehicles) and heuristic 3 takes on average

only 7 runs.

Instances 1 2 3 4 9 11
Basic (No Extra  Nr 66 61 68 65 61 64
Vehicles)

Lower Bound Nr. Extra Vehicles 16 11 18 15 11 14
Heuristic 1 Nr. Extra Vehicles 22 52 36 15 19 20
Heuristic 2 Nr. Extra Vehicles 29 42 34 15 21 31
Heuristic 3 Nr. Extra Vehicles 20 31 19 15 19 17
Heuristic 5 Nr. Extra Vehicles 20 31 19 15 17 17

Table 13: Comparison of results for heuristic 1, 2, 3 and 5
* “Infeas.” means infeasible.
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8. Conclusions

The main objective of this thesis is to study the effect of extra connections or
extra vehicles on ITT optimization and the feasibility of the asset-light solution.
The methodology of this study is mainly based on the mathematical model
developed by Tierney et al. (2013), which is also the main difference between
this study and van den Berg (2013)’s simulation study. In strong contrast to the
results of van den Berg (2013), this thesis shows that adding extra connections
does have a significant effect on reducing the number of basic vehicles needed.
and increasing the average vehicle utilization rate. As a result, based on this
observation, it is recommended that this asset-light solution be further studied,

especially the economic feasibility of this solution.

In addition, this study also investigated five different heuristics of adding extra
connections so as to maximize the effect. After comparing the results of five
heuristics, it is concluded that heuristic 5 has the best performance of all and
that heuristic 3 closely follows. This is contrary to the expectation that adding
extra vehicles at peak hours would have the most effect. This might be because
adding vehicles at non-peak hours avoids queues at terminals and congestion on
roads. In addition, adding vehicles at pre-peak hours would allow jobs to be done
early before peak hours and reduce the burden during peak hours. Accounting
for both the difference in computation time and difference in performance
between heuristic 3 and heuristic 5, I conclude that heuristic 3 is the best
heuristic found to guarantee good performance with reasonable amount of

computation time (approximately 900 seconds or 15 minutes).
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This study is also subject to some limitations. First of all, the binary search is
done manually. In the future, either binary search can be written into the
computer program or even more efficient way to find the optimal number of
vehicles can be found. For example, a new mathematical model with the
objective function being minimizing the number of extra vehicles and an added
constraint limits the total penalty to be zero. Secondly, the instances used in this
study were simplified based on another study due to the limitations of the
computer program I use. Therefore, the program can be further improved to
accommodate demand instances which reflect the reality more accurately.
Thirdly, it is assumed in this paper that extra vehicles can be added at any time
at any terminal, which might be difficult to achieve in practice. This assumption
therefore makes the conclusion of this research an optimistic one. Finally, the
mathematical model used in this paper is a deterministic one and therefore
cannot deal with uncertain capacity. This makes studying the uncertain supply of
extra vehicles difficult. However, given that any lateness in container arrival is
highly undesirable, the uncertainty in the supply of extra vehicles represent a

major challenge to this asset-light solution.

Future study on the asset-light solution should not only deal with the limitations
in this study, but the findings in this study should also be validated with
improved methodology. More heuristics to add extra vehicles should also be
explored, e.g., adding extra vehicles based on the vehicle utilization information,
adding extra vehicles at the busiest terminals, etc. Furthermore, more practical

aspects such as economic feasibility, ways to secure extra capacity, risks and risk
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management for this asset-light solution, etc. are among the most important

subjects to be investigated before this solution can be put into practice.
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Appendix A OD-Matrix of Maasvlakte Terminals
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